Difference between revisions of "MV Camera on Orange Pi's RK35XX Boards"

From wiki_veye
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
[https://wiki.veye.cc/index.php/MV_Camera_on_Orange_Pi%27s_RK35XX_Boards/zh 查看中文]
 
[https://wiki.veye.cc/index.php/MV_Camera_on_Orange_Pi%27s_RK35XX_Boards/zh 查看中文]
  
'''<big>怎样在Orange Pi的RK35XX板子上使用MV系列和RAW系列相机</big>'''
+
=== Overview ===
===概述 ===
+
The MV series and RAW series cameras are cameras designed for AI applications in the industrial field. They use the MIPI CSI-2 interface and are particularly suitable for use with embedded computing platforms. They have rich data formats and triggering features, extremely low latency, high bandwidth, and reliable stability.
MV系列和RAW系列相机是为工业领域的AI应用推出的相机。其使用MIPI CSI-2接口,尤其适合嵌入式运算平台使用。它具备丰富的数据格式和触发特性,极低的延时,极高的带宽和可靠的稳定性。
 
  
本文以Orange Pi的CM4和CM5主板为例,介绍怎样将MV和RAW系列摄像机接入RK3566/3K3568系统。
+
This article takes OrangePi CM4 and OrangePi CM5 board as an example to introduce how to connect MV and RAW series cameras to the RK3566/3K3568 and RK3588S/RK3588 system.
  
我们提供了Linux操作系统下的驱动。
+
We provide drivers for the Linux operating system (using Ubuntu as an example).
====支持的模组====
+
====Camera Module List====
 
{| class="wikitable"
 
{| class="wikitable"
!系列
+
!Series
!型号
+
!Model
!状态
+
!Status
 
|-
 
|-
|MV系列
+
|MV series
 
|MV-MIPI-IMX178M
 
|MV-MIPI-IMX178M
|完成
+
|Done
 
|-
 
|-
|MV系列
+
|MV series
 
|MV-MIPI-SC130M
 
|MV-MIPI-SC130M
|完成
+
|Done
 
|-
 
|-
|MV系列
+
|MV series
 +
|MV-MIPI-IMX296M
 +
|Done
 +
|-
 +
|MV series
 
|MV-MIPI-IMX287M
 
|MV-MIPI-IMX287M
|完成
+
|Done
|-
 
|MV系列
 
|MV-MIPI-IMX296M
 
|完成
 
 
|-
 
|-
|MV系列
+
|MV series
 
|MV-MIPI-IMX265M
 
|MV-MIPI-IMX265M
|完成
+
|Done
 
|-
 
|-
|MV系列
+
|MV series
 
|MV-MIPI-IMX264M
 
|MV-MIPI-IMX264M
|完成
+
|Done
 
|-
 
|-
|RAW系列
+
|RAW series
 
|RAW-MIPI-SC132M
 
|RAW-MIPI-SC132M
|完成
+
|Done
 
|-
 
|-
|RAW系列
+
|RAW series
 
|RAW-MIPI-IMX462M
 
|RAW-MIPI-IMX462M
|完成
+
|Done
 
|-
 
|-
|RAW系列
+
|RAW series
 
|RAW-MIPI-AR0234M
 
|RAW-MIPI-AR0234M
|完成
+
|Done
 
|-
 
|-
|RAW系列
+
|RAW series
 
|RAW-MIPI-SC535M
 
|RAW-MIPI-SC535M
|完成
+
|Done
 
|}
 
|}
===硬件准备及安装===
 
我们使用Orange Pi的CM4和CM5的官方底板,这两个底板提供了兼容树莓派的15Pin端子。对于RAW系列相机,无需使用转接板即可将我们的相机安装到其主板上。对于MV系列相机,则需要使用[[ADP-MV1 Adapter Board Data Sheet/zh|ADP-MV1]]转接板进行连接。
 
  
==== 相机与OrangePi CM4的连接 ====
+
=== Hardware Setup ===
ADP-MV1和Zero 3W之间使用15P的FFC异面线连接,注意接触面方向。
+
We use the official baseboards of the Orange Pi CM4 and CM5, which feature a 15-pin header compatible with Raspberry Pi. For the RAW series cameras, our cameras can be directly mounted onto the baseboard without the need for an adapter board. For the MV series cameras, the ADP-MV1 adapter board is required for connection.
[[File:OrangePi CM4 to MV cam.jpg|center|thumb|600x600px|OrangePi CM4 to MV cam]]
+
 
[[File:OrangePi CM4 to RAW cam.jpg|center|thumb|600x600px|OrangePi CM4 to RAW cam]]
+
==== Camera Connection to Orange Pi CM4 ====
<br />
+
The ADP-MV1 is connected to the OrangePi CM4 via a 15-pin FFC cable with opposite surface alignment; please pay attention to the orientation of the contact surfaces.
 +
 
 +
Note that only the CAM1 shown in the image below supports MV and RAW cameras.[[File:OrangePi CM4 to MV cam.jpg|center|thumb|600x600px|OrangePi CM4 to MV cam|link=http://wiki.veye.cc/index.php/File:OrangePi_CM4_to_MV_cam.jpg]][[File:OrangePi CM4 to RAW cam.jpg|center|thumb|600x600px|OrangePi CM4 to RAW cam|link=http://wiki.veye.cc/index.php/File:OrangePi_CM4_to_RAW_cam.jpg]]<br />
 +
====Camera Connection to Orange Pi CM5====
 +
The OrangePi CM5 supports up to four cameras. The following diagram shows the hardware connection method for simultaneously connecting multiple cameras.[[File:OrangePi CM5 to all cam overview.jpg|center|thumb|600x600px|OrangePi CM5 to all cam overview|link=http://wiki.veye.cc/index.php/File:OrangePi_CM5_to_all_cam_overview.jpg]][[File:OrangePi CM5 to all cam backview.jpg|center|thumb|600x600px|OrangePi CM5 to all cam backview|link=http://wiki.veye.cc/index.php/File:OrangePi_CM5_to_all_cam_backview.jpg]]
 +
===Introduction to github repositories===
 +
https://github.com/veyeimaging/rk35xx_veye_bsp
 +
 
 +
https://github.com/veyeimaging/rk35xx_orangepi
 +
 
 +
includes:
 +
 
 +
*driver source code
 +
*i2c toolkits
 +
*application demo
 +
 
 +
In addition, a compiled linux kernel installation package  is provided in the [https://github.com/veyeimaging/rk35xx_orangepi/releases releases].
 +
===Upgrade the Ubuntu system===
 +
We provide a flashing image for the release system, as well as a deb package for the Linux kernel.
 +
 
 +
Refer to the [http://www.orangepi.org/orangepiwiki/index.php/Orange_Pi_CM4 OrangePi CM4 user manual] or the [http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/service-and-support/Orange-Pi-CM5.html OrangePi CM5 user manual] for instructions on flashing the system. Alternatively, you can use the general <code>dpkg</code> command to install the deb package.
 +
===Check system status===
 +
Run the following command to confirm whether the camera is probed.
 +
 
 +
<code>sudo dmesg | grep mvcam</code>
 +
====CM4====
 +
The CM4 supports camera connection only through the CAM1 interface. Taking the RAW-MIPI-SC132M as an example, the <code>dmesg</code> output contains the following information:
 +
 
 +
The output message appears as shown below:
 +
 
 +
<code>mvcam 1-003b: camera is: RAW-MIPI-SC132M</code>
 +
 
 +
<code>mvcam 1-003b: firmware version: 0x1040000</code>
 +
 
 +
*Run the following command to check the presence of video node.
 +
 
 +
<code>ls /dev/video0</code>
 +
 
 +
The output message appears as shown below.
 +
 
 +
<code>video0</code>
 +
 
 +
==== CM5 ====
 +
The CM5 supports the connection of up to four cameras. Taking the RAW-MIPI-SC132M as an example, the <code>dmesg</code> output contains the following information:
 +
 
 +
<code>mvcam 3-003b: camera is: RAW-MIPI-SC132M</code>
 +
 
 +
<code>mvcam 3-003b: firmware version: 0x1040000</code>
 +
 
 +
<code>mvcam 4-003b: camera is: RAW-MIPI-SC132M</code>
 +
 
 +
<code>mvcam 4-003b: firmware version: 0x1040000</code>
 +
 
 +
<code>mvcam 5-003b: camera is: RAW-MIPI-SC132M</code>
 +
 
 +
<code>mvcam 5-003b: firmware version: 0x1040000  </code>
 +
 
 +
<code>mvcam 6-003b: camera is: RAW-MIPI-SC132M</code>
 +
 
 +
<code>mvcam 6-003b: firmware version: 0x1040000</code>
 +
 
 +
==== Viewing the Topology with <code>media-ctl</code> ====
 +
Let's take CM5's CAM1 as an example for explanation.
 +
 
 +
By using the <code>media-ctl</code> command, you can clearly display the current topology.
 +
 
 +
<code>media-ctl -p -d /dev/media2</code>
 +
 
 +
=====Link relationship=====
 +
mv camera->rockchip-csi2-dphy1->rockchip-mipi-csi2->stream_cif_mipi_id0 - - ->DDR(/dev/video22)
 +
 
 +
The application can obtain images through the <code>/dev/video22</code> node.
 +
 
 +
===== mv camera entity information =====
 +
Taking the RAW-MIPI-SC132M as an example:
 +
 
 +
<code>- entity 63: m00_b_mvcam 4-003b (1 pad, 1 link)</code>
 +
 
 +
<code>             type V4L2 subdev subtype Sensor flags 0</code>
 +
 
 +
<code>             device node name /dev/v4l-subdev8</code>
 +
 
 +
<code>        pad0: Source</code>
 +
 
 +
<code>                [fmt:Y8_1X8/1080x1280@100/12000 field:none]</code>
 +
 
 +
<code>                -> "rockchip-csi2-dphy1":0 [ENABLED]</code>
 +
 
 +
You can see that:
 +
 
 +
*The complete name of this entity is: <code>m00_b_mvcam 4-003b</code>.
 +
*It is a V4L2 subdev (Sub-Device) Sensor.
 +
*Its corresponding node is <code>/dev/v4l-subdev8</code>, which can be opened and configured by applications (such as <code>v4l2-ctl</code>).
 +
*Its output format is <code>[fmt:Y8_1X8/1080x1280@100/12000 field:none]</code>, where <code>Y8_1X8</code> is a shorthand for a mbus-code, which will be listed in the next section of this article.
 +
*The current resolution is <code>1080x1280</code>.
 +
*The current frame interval is <code>100/12000</code>, which means the frame rate is 120.
 +
*The data format output by the camera can be modified using the media-ctl command.
 +
 
 +
The correspondence of the various information is as follows:
 +
 
 +
- CM4
 +
{| class="wikitable"
 +
!CAM num
 +
!I2C
 +
!media node
 +
!media entity name
 +
!video node
 +
!subdev node
 +
|-
 +
|1
 +
|1
 +
|/dev/media0
 +
|m00_b_mvcam 1-003b
 +
|/dev/video0
 +
|/dev/v4l-subdev2
 +
|}- CM5
 +
{| class="wikitable"
 +
!CAM num
 +
!I2C
 +
!media node
 +
!media entity name
 +
!video node
 +
!subdev node
 +
|-
 +
|1
 +
|4
 +
|/dev/media2
 +
|m00_b_mvcam 4-003b
 +
|/dev/video22
 +
|/dev/v4l-subdev8
 +
|-
 +
|2
 +
|3
 +
|/dev/media3
 +
|m01_b_mvcam 3-003b
 +
|/dev/video33
 +
|/dev/v4l-subdev11
 +
|-
 +
|3
 +
|5
 +
|/dev/media1
 +
|m00_b_mvcam 5-003b
 +
|/dev/video11
 +
|/dev/v4l-subdev5
 +
|-
 +
|4
 +
|6
 +
|/dev/media0
 +
|m00_b_mvcam 6-003b
 +
|/dev/video0
 +
|/dev/v4l-subdev2
 +
|}
 +
=====mbus-code list=====
 +
MV series and RAW series cameras have different data format capabilities, which can be found in the data manual for each camera model.
 +
{| class="wikitable"
 +
!Format on datasheet
 +
!mbus-code for media-ctl
 +
!FourCC pixelformat for v4l2-ctl
 +
|-
 +
|RAW8
 +
|Y8_1X8
 +
|GREY
 +
|-
 +
|RAW10
 +
|Y10_1X10
 +
|'Y10 '
 +
|-
 +
|RAW12
 +
|Y12_1X12
 +
|'Y12 '
 +
|-
 +
|UYVY
 +
|UYVY8_2X8
 +
|UYVY
 +
|}
 +
===Raw data format===
 +
The VICAP module of RK3588 supports two data saving formats, Compact and Noncompact RAW. You can modify the mode using the RKCIF_CMD_SET_CSI_MEMORY_MODE ioctl command of RKCIF. By default, the output is in Compact RAW format.[[File:Compact raw and noncompact raw of rk3588 vicap.png|center|thumb|800x800px|Compact raw and noncompact raw of rk3588 VICAP|link=http://wiki.veye.cc/index.php/File:Compact_raw_and_noncompact_raw_of_rk3588_vicap.png]]
 +
====Noncompact RAW====
 +
For pixel data with 10-bit depth or 12-bit depth, two bytes are always used to store one pixel. This storage method is convenient for software processing, but it has the disadvantage of occupying a large amount of space.
 +
 
 +
Depending on whether the effective data is stored in the high bits or low bits, it can be further divided into two types: high align and low align.
 +
=====Noncompact RAW(high align)=====
 +
Data is saved to the high bits, and the unused low bits are filled with 0. This is one of the data formats supported by RK VICAP.
 +
=====Noncompact RAW(low align)=====
 +
In Noncompact RAW (low align) format, data is saved to the low bits, and the unused high bits are filled with 0. The V4L2 standard 'Y10' (10-bit Greyscale) and 'Y12' (12-bit Greyscale) formats are both stored in this way.
 +
 
 +
The pixel_layer_convert conversion tool mentioned later in the article also converts Compact RAW to this storage format for easy display using image players.
 +
====Compact RAW====
 +
As shown above,there is no bit padding between pixels in this storage format.
 +
====Line stride====
 +
To facilitate fast operations on images, the system usually provides row-aligned buffer sizes for each line of data. RK3588 uses 256-byte alignment for this purpose.
 +
 
 +
line_stride = ALIGN_UP(image_width*bits_per_pixel/8,256)
 +
 
 +
For example, when the image width is 1456:
 +
 
 +
8bit depth,line_stride=1536
 +
 
 +
10bit depth,preferred_stride=2048
 +
 
 +
12bit depth,preferred_stride=2304
 +
====Format convert tool====
 +
We have written a small tool: [https://github.com/veyeimaging/pixel_layer_convert pixel_layer_convert], which can easily convert Compact images to Noncompact (low align) images.
 +
 
 +
For example, the following command can convert a Compact RAW10 image with a width of 1456 to Noncompact RAW10 format:
 +
 
 +
<code>./pixel_layer_convert -I R10C -i y10-1456x1088_0001.raw -o y10-1456x1088_0001_new.raw -w 1456</code>
 +
====Raw data image player====
 +
We recommend using [https://www.offminor.de/ vooya] as the player, which supports GREY, and unpacked image formats.
 +
 
 +
Also, y8 file can be used with this player: [https://yuv-player-deluxe.software.informer.com/2.6/ YUV Displayer Deluxe].
 +
 
 +
=== Application Example ===
 +
Please note that in the following sections, <code>/dev/media0</code>, <code>/dev/video0</code>, and <code>/dev/v4l-subdev2</code> should be replaced with the actual values as described in the previous sections.
 +
 
 +
==== Configuring Global Variables ====
 +
Set the <code>I2C_BUS</code> global variable based on the board model. Below are examples for two different boards, each with one camera as an example.
 +
 
 +
*OrangePi CM4
 +
 
 +
<code>export I2C_BUS=1</code>
 +
 
 +
*OrangePi CM5
 +
 
 +
<code>export I2C_BUS=6</code>
 +
 
 +
For the convenience of later descriptions, global variables are configured here according to the sensor size.
 +
 
 +
*MV-MIPI-IMX178M
 +
 
 +
<code>export WIDTH=3088</code>
 +
 
 +
<code>export HEIGHT=2064</code>
 +
 
 +
<code>export FPS=22</code>
 +
 
 +
*MV-MIPI-SC130M
 +
 
 +
<code>export WIDTH=1280</code>
 +
 
 +
<code>export HEIGHT=1024</code>
 +
 
 +
<code>export FPS=108</code>
 +
 
 +
*MV-MIPI-IMX296M
 +
 
 +
<code>export WIDTH=1456</code>
 +
 
 +
<code>export HEIGHT=1088</code>
 +
 
 +
<code>export FPS=60</code>
 +
 
 +
*MV-MIPI-IMX287M
 +
 
 +
<code>export WIDTH=704</code>
 +
 
 +
<code>export HEIGHT=544</code>
 +
 
 +
<code>export FPS=319</code>
 +
 
 +
*MV-MIPI-IMX265M
 +
 
 +
<code>export WIDTH=2048</code>
 +
 
 +
<code>export HEIGHT=1544</code>
 +
 
 +
<code>export FPS=45</code>
 +
 
 +
*MV-MIPI-IMX264M
 +
 
 +
<code>export WIDTH=2432</code>
 +
 
 +
<code>export HEIGHT=2056</code>
 +
 
 +
<code>export FPS=28</code>
 +
 
 +
*RAW-MIPI-SC132M
 +
 
 +
<code>export WIDTH=1024</code>
 +
 
 +
<code>export HEIGHT=1280</code>
 +
 
 +
<code>export FPS=120</code>
 +
 
 +
*RAW-MIPI-IMX462M
 +
 
 +
<code>export WIDTH=1920</code>
 +
 
 +
<code>export HEIGHT=1088</code>
 +
 
 +
<code>export FPS=60</code>
 +
 
 +
*RAW-MIPI-AR0234M
 +
 
 +
<code>export WIDTH=1920</code>
 +
 
 +
<code>export HEIGHT=1200</code>
 +
 
 +
<code>export FPS=60</code>
 +
 
 +
*RAW-MIPI-SC535M
 +
 
 +
<code>export WIDTH=2432</code>
 +
 
 +
<code>export HEIGHT=2048</code>
 +
 
 +
<code>export FPS=50</code>
 +
====Configure parameters using v4l2-ctl====
 +
<code>$ v4l2-ctl -d /dev/v4l-subdev2 -L</code>
 +
 
 +
<code>User Controls</code>
 +
 
 +
<code>                   trigger_mode 0x00981901 (int)    : min=0 max=2 step=1 default=0 value=0 flags=volatile, execute-on-write</code>
 +
 
 +
<code>                    trigger_src 0x00981902 (int)    : min=0 max=1 step=1 default=1 value=1 flags=volatile, execute-on-write</code>
 +
 
 +
<code>                    soft_trgone 0x00981903 (button) : flags=write-only, execute-on-write</code>
 +
 
 +
<code>                     frame_rate 0x00981904 (int)    : min=1 max=60 step=1 default=60 value=60 flags=volatile, execute-on-write</code>
 +
 
 +
<code>                          roi_x 0x00981905 (int)    : min=0 max=1376 step=8 default=0 value=0</code>
 +
 
 +
<code>                          roi_y 0x00981906 (int)    : min=0 max=1024 step=4 default=0 value=0</code>
 +
 
 +
Parameters can be set and get using the following methods.
 +
 
 +
<code>v4l2-ctl --set-ctrl [ctrl_type]=[val]</code>
 +
 
 +
<code>v4l2-ctl --get-ctrl [ctrl_type]</code>
 +
 
 +
All the above functions can be implemented using [[Mv mipi i2c.sh user guide|mv_mipi_i2c.sh]].
 +
 
 +
Note that the above parameters cannot be modified during the capture process.
 +
 
 +
The following is an explanation of each parameter:
 +
=====Trigger Mode=====
 +
<code>v4l2-ctl --set-ctrl <small>trigger_mode=[0-2]</small></code>
 +
 
 +
0:Video streaming mode
 +
 
 +
1:Normal trigger mode.
 +
 
 +
2:High-speed continuous trigger mode.
 +
=====Trigger Source=====
 +
<code>v4l2-ctl --set-ctrl <small>trigger_src=[0-1]</small></code>
 +
 
 +
0: Software trigger mode.
 +
 
 +
1: Hardware trigger mode.
 +
=====Software trigger command=====
 +
<code>v4l2-ctl --set-ctrl <small>soft_trgone=1</small></code>
 +
=====Set frame rate=====
 +
<code>v4l2-ctl --set-ctrl frame_rate=[1-max]</code>
 +
 
 +
The maximum frame rate is automatically updated as the resolution changed.
 +
=====Set the starting position of the ROI=====
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_x=0</code>
 +
 
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_y=0</code>
 +
 
 +
After setting the ROI starting position, you need to complete the full ROI configuration using the <code>media-ctl</code> command.
 +
 
 +
Note that setting the ROI may affect the maximum frame rate, and the ROI parameters need to meet the requirements specified in the camera manual.
 +
====Set image format using media-ctl====
 +
use the following command to configure the camera's data format, resolution, and frame rate using <code>media-ctl</code>:
 +
 
 +
<code>media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam '"$I2C_BUS"'-003b":0[fmt:Y8_1X8/'"$WIDTH"'x'"$HEIGHT"'@1/'"$FPS"']'</code>
 +
 
 +
Among them: <code>"m00_b_mvcam '"$I2C_BUS"'-003b"</code> refers to the complete name of the camera entity, <code>Y8_1X8</code> is the mbus-code, <code>'"$WIDTH"'x'"$HEIGHT"'</code> indicates the resolution, <code>1/'"$FPS"'</code> indicates the resolution frame rate.
 +
 
 +
The width and height here cooperate with the roi_x and roi_y of the v4l2-ctl command to form the ROI parameter.
 +
 
 +
For example, for MV-MIPI-IMX296M, the command after variable replacement would be:
 +
 
 +
<code>media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam 6-003b":0[fmt:Y8_1X8/1456x1088@1/60 field:none]'</code>
 +
 
 +
You can not only configure the data format, resolution, and frame rate in one command, but also modify them separately as needed.
 +
====Video Streaming mode====
 +
=====Set data format, resolution, frame rate=====
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_x=0</code>
 +
 
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_y=0</code>
 +
 
 +
<code>media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam '"$I2C_BUS"'-003b":0[fmt:Y8_1X8/'"$WIDTH"'x'"$HEIGHT"'@1/'"$FPS"']'</code>
 +
=====Frame rate statistics=====
 +
In streaming mode, the following commands can be used for frame rate statistics:
 +
 
 +
<code>v4l2-ctl --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=-1 --stream-to=/dev/null</code>
 +
 
 +
Or:
 +
 
 +
<code>./yavta -c1000 --skip 0 -f Y8 -s ${WIDTH}x${HEIGHT} /dev/video0</code>
 +
=====Save image to file=====
 +
 
 +
*raw8
 +
 
 +
<code>v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=1 --stream-to=y8-${WIDTH}x${HEIGHT}.raw</code>
 +
 
 +
*raw10
 +
 
 +
<code>v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat='Y10 ' --stream-mmap --stream-count=1 --stream-to=y10-${WIDTH}x${HEIGHT}.raw</code>
 +
 
 +
*raw12
 +
 
 +
<code>v4l2-ctl -d /dev/video0 --set-fmt-video=$WIDTH,height=$HEIGHT,pixelformat='Y12 ' --stream-mmap --stream-count=1 --stream-to=y12-${WIDTH}x${HEIGHT}.raw</code>
 +
 
 +
Please refer to the description in the previous section for the image format.
 +
=====Example of yavta=====
 +
======Install yavta======
 +
<code>git clone <nowiki>git://git.ideasonboard.org/yavta.git</nowiki></code>
 +
 
 +
<code>cd yavta;make</code>
 +
======Save image to file======
 +
After setting data format, resolution, frame rate,run:
 +
 
 +
<code>./yavta -c1 -Fy8-${WIDTH}x${HEIGHT}.raw --skip 0 -f Y8 -s ${WIDTH}x${HEIGHT} /dev/video0</code>
 +
=====Example of import image to OpenCV=====
 +
<code>sudo apt install python3-opencv</code>
 +
 
 +
See the [https://github.com/veyeimaging/rk356x_firefly/tree/main/linux/samples samples] directory on github for details.
 +
 
 +
<code>python ./v4l2dev_2_opencv_show_grey.py --width 1456 --height 1088 --fps 60 --i2c 7</code>
 +
=====Example of gstreamer application=====
 +
We provide several gstreamer routines that implement the preview function. See the [https://github.com/veyeimaging/rk35xx_veye_bsp/tree/main/samples samples] directory on github for details.
 +
====Trigger mode====
 +
=====Set data format, resolution, frame rate=====
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_x=0</code>
 +
 
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_y=0</code>
 +
 
 +
<code>media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam '"$I2C_BUS"'-003b":0[fmt:Y8_1X8/'"$WIDTH"'x'"$HEIGHT"'@1/'"$FPS"']'</code>
 +
=====Software trigger mode=====
 +
======Set mode======
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl <small>trigger_mode=1</small></code>
 +
 
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl <small>trigger_src=0</small></code>
 +
======Start acquisition======
 +
<code>v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=1 --stream-to=y8-${WIDTH}x${HEIGHT}.raw</code>
 +
======Perform soft trigger operation======
 +
In other shell terminals, you can execute the following command multiple times for multiple triggers.
 +
 
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl <small>soft_trgone=1</small></code>
 +
=====Hardware trigger mode=====
 +
======Set mode======
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl <small>trigger_mode=1</small></code>
 +
 
 +
<code>v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl <small>trigger_src=1</small></code>
 +
 
 +
The [[Mv mipi i2c.sh user guide|mv_mipi_i2c.sh]] script can be used to set rich trigger parameters.
 +
======Start acquisition======
 +
<code>v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=1 --stream-to=y8-${WIDTH}x${HEIGHT}.raw</code>
 +
======Perform hardware trigger operation======
 +
Connect the appropriate trigger signal to the trigger pin of the camera and trigger it.
 +
===i2c script for parameter configuration===
 +
We provide shell scripts to configure the parameters.
 +
 
 +
[[mv_mipi_i2c.sh user guide]]
 +
===References===
 +
 
 +
*OrangePi CM4
 +
 
 +
http://www.orangepi.cn/orangepiwiki/index.php/Orange_Pi_CM4
 +
 
 +
*OrangePi CM5
  
==== 相机与OrangePi CM5的连接 ====
+
http://www.orangepi.cn/html/hardWare/computerAndMicrocontrollers/service-and-support/Orange-Pi-CM5.html
OrangePi CM5最多支持4个VEYE摄像头,下图是同时连接多种摄像头的硬件连接方法展示。[[File:OrangePi CM5 to all cam overview.jpg|center|thumb|600x600px|OrangePi CM5 to all cam overview|link=http://wiki.veye.cc/index.php/File:OrangePi_CM5_to_all_cam_overview.jpg]][[File:OrangePi CM5 to all cam backview.jpg|center|thumb|600x600px|OrangePi CM5 to all cam backview|link=http://wiki.veye.cc/index.php/File:OrangePi_CM5_to_all_cam_backview.jpg]]
+
===Document History===
  
 +
*2024-01-10
  
<br />
+
Release 1st version.

Latest revision as of 14:32, 10 January 2025

查看中文

1 Overview

The MV series and RAW series cameras are cameras designed for AI applications in the industrial field. They use the MIPI CSI-2 interface and are particularly suitable for use with embedded computing platforms. They have rich data formats and triggering features, extremely low latency, high bandwidth, and reliable stability.

This article takes OrangePi CM4 and OrangePi CM5 board as an example to introduce how to connect MV and RAW series cameras to the RK3566/3K3568 and RK3588S/RK3588 system.

We provide drivers for the Linux operating system (using Ubuntu as an example).

1.1 Camera Module List

Series Model Status
MV series MV-MIPI-IMX178M Done
MV series MV-MIPI-SC130M Done
MV series MV-MIPI-IMX296M Done
MV series MV-MIPI-IMX287M Done
MV series MV-MIPI-IMX265M Done
MV series MV-MIPI-IMX264M Done
RAW series RAW-MIPI-SC132M Done
RAW series RAW-MIPI-IMX462M Done
RAW series RAW-MIPI-AR0234M Done
RAW series RAW-MIPI-SC535M Done

2 Hardware Setup

We use the official baseboards of the Orange Pi CM4 and CM5, which feature a 15-pin header compatible with Raspberry Pi. For the RAW series cameras, our cameras can be directly mounted onto the baseboard without the need for an adapter board. For the MV series cameras, the ADP-MV1 adapter board is required for connection.

2.1 Camera Connection to Orange Pi CM4

The ADP-MV1 is connected to the OrangePi CM4 via a 15-pin FFC cable with opposite surface alignment; please pay attention to the orientation of the contact surfaces.

Note that only the CAM1 shown in the image below supports MV and RAW cameras.

OrangePi CM4 to MV cam
OrangePi CM4 to RAW cam


2.2 Camera Connection to Orange Pi CM5

The OrangePi CM5 supports up to four cameras. The following diagram shows the hardware connection method for simultaneously connecting multiple cameras.

OrangePi CM5 to all cam overview
OrangePi CM5 to all cam backview

3 Introduction to github repositories

https://github.com/veyeimaging/rk35xx_veye_bsp

https://github.com/veyeimaging/rk35xx_orangepi

includes:

  • driver source code
  • i2c toolkits
  • application demo

In addition, a compiled linux kernel installation package is provided in the releases.

4 Upgrade the Ubuntu system

We provide a flashing image for the release system, as well as a deb package for the Linux kernel.

Refer to the OrangePi CM4 user manual or the OrangePi CM5 user manual for instructions on flashing the system. Alternatively, you can use the general dpkg command to install the deb package.

5 Check system status

Run the following command to confirm whether the camera is probed.

sudo dmesg | grep mvcam

5.1 CM4

The CM4 supports camera connection only through the CAM1 interface. Taking the RAW-MIPI-SC132M as an example, the dmesg output contains the following information:

The output message appears as shown below:

mvcam 1-003b: camera is: RAW-MIPI-SC132M

mvcam 1-003b: firmware version: 0x1040000

  • Run the following command to check the presence of video node.

ls /dev/video0

The output message appears as shown below.

video0

5.2 CM5

The CM5 supports the connection of up to four cameras. Taking the RAW-MIPI-SC132M as an example, the dmesg output contains the following information:

mvcam 3-003b: camera is: RAW-MIPI-SC132M

mvcam 3-003b: firmware version: 0x1040000

mvcam 4-003b: camera is: RAW-MIPI-SC132M

mvcam 4-003b: firmware version: 0x1040000

mvcam 5-003b: camera is: RAW-MIPI-SC132M

mvcam 5-003b: firmware version: 0x1040000  

mvcam 6-003b: camera is: RAW-MIPI-SC132M

mvcam 6-003b: firmware version: 0x1040000

5.3 Viewing the Topology with media-ctl

Let's take CM5's CAM1 as an example for explanation.

By using the media-ctl command, you can clearly display the current topology.

media-ctl -p -d /dev/media2

5.3.1 Link relationship

mv camera->rockchip-csi2-dphy1->rockchip-mipi-csi2->stream_cif_mipi_id0 - - ->DDR(/dev/video22)

The application can obtain images through the /dev/video22 node.

5.3.2 mv camera entity information

Taking the RAW-MIPI-SC132M as an example:

- entity 63: m00_b_mvcam 4-003b (1 pad, 1 link)

             type V4L2 subdev subtype Sensor flags 0

             device node name /dev/v4l-subdev8

        pad0: Source

                [fmt:Y8_1X8/1080x1280@100/12000 field:none]

                -> "rockchip-csi2-dphy1":0 [ENABLED]

You can see that:

  • The complete name of this entity is: m00_b_mvcam 4-003b.
  • It is a V4L2 subdev (Sub-Device) Sensor.
  • Its corresponding node is /dev/v4l-subdev8, which can be opened and configured by applications (such as v4l2-ctl).
  • Its output format is [fmt:Y8_1X8/1080x1280@100/12000 field:none], where Y8_1X8 is a shorthand for a mbus-code, which will be listed in the next section of this article.
  • The current resolution is 1080x1280.
  • The current frame interval is 100/12000, which means the frame rate is 120.
  • The data format output by the camera can be modified using the media-ctl command.

The correspondence of the various information is as follows:

- CM4

CAM num I2C media node media entity name video node subdev node
1 1 /dev/media0 m00_b_mvcam 1-003b /dev/video0 /dev/v4l-subdev2

- CM5

CAM num I2C media node media entity name video node subdev node
1 4 /dev/media2 m00_b_mvcam 4-003b /dev/video22 /dev/v4l-subdev8
2 3 /dev/media3 m01_b_mvcam 3-003b /dev/video33 /dev/v4l-subdev11
3 5 /dev/media1 m00_b_mvcam 5-003b /dev/video11 /dev/v4l-subdev5
4 6 /dev/media0 m00_b_mvcam 6-003b /dev/video0 /dev/v4l-subdev2
5.3.3 mbus-code list

MV series and RAW series cameras have different data format capabilities, which can be found in the data manual for each camera model.

Format on datasheet mbus-code for media-ctl FourCC pixelformat for v4l2-ctl
RAW8 Y8_1X8 GREY
RAW10 Y10_1X10 'Y10 '
RAW12 Y12_1X12 'Y12 '
UYVY UYVY8_2X8 UYVY

6 Raw data format

The VICAP module of RK3588 supports two data saving formats, Compact and Noncompact RAW. You can modify the mode using the RKCIF_CMD_SET_CSI_MEMORY_MODE ioctl command of RKCIF. By default, the output is in Compact RAW format.

Compact raw and noncompact raw of rk3588 VICAP

6.1 Noncompact RAW

For pixel data with 10-bit depth or 12-bit depth, two bytes are always used to store one pixel. This storage method is convenient for software processing, but it has the disadvantage of occupying a large amount of space.

Depending on whether the effective data is stored in the high bits or low bits, it can be further divided into two types: high align and low align.

6.1.1 Noncompact RAW(high align)

Data is saved to the high bits, and the unused low bits are filled with 0. This is one of the data formats supported by RK VICAP.

6.1.2 Noncompact RAW(low align)

In Noncompact RAW (low align) format, data is saved to the low bits, and the unused high bits are filled with 0. The V4L2 standard 'Y10' (10-bit Greyscale) and 'Y12' (12-bit Greyscale) formats are both stored in this way.

The pixel_layer_convert conversion tool mentioned later in the article also converts Compact RAW to this storage format for easy display using image players.

6.2 Compact RAW

As shown above,there is no bit padding between pixels in this storage format.

6.3 Line stride

To facilitate fast operations on images, the system usually provides row-aligned buffer sizes for each line of data. RK3588 uses 256-byte alignment for this purpose.

line_stride = ALIGN_UP(image_width*bits_per_pixel/8,256)

For example, when the image width is 1456:

8bit depth,line_stride=1536

10bit depth,preferred_stride=2048

12bit depth,preferred_stride=2304

6.4 Format convert tool

We have written a small tool: pixel_layer_convert, which can easily convert Compact images to Noncompact (low align) images.

For example, the following command can convert a Compact RAW10 image with a width of 1456 to Noncompact RAW10 format:

./pixel_layer_convert -I R10C -i y10-1456x1088_0001.raw -o y10-1456x1088_0001_new.raw -w 1456

6.5 Raw data image player

We recommend using vooya as the player, which supports GREY, and unpacked image formats.

Also, y8 file can be used with this player: YUV Displayer Deluxe.

7 Application Example

Please note that in the following sections, /dev/media0, /dev/video0, and /dev/v4l-subdev2 should be replaced with the actual values as described in the previous sections.

7.1 Configuring Global Variables

Set the I2C_BUS global variable based on the board model. Below are examples for two different boards, each with one camera as an example.

  • OrangePi CM4

export I2C_BUS=1

  • OrangePi CM5

export I2C_BUS=6

For the convenience of later descriptions, global variables are configured here according to the sensor size.

  • MV-MIPI-IMX178M

export WIDTH=3088

export HEIGHT=2064

export FPS=22

  • MV-MIPI-SC130M

export WIDTH=1280

export HEIGHT=1024

export FPS=108

  • MV-MIPI-IMX296M

export WIDTH=1456

export HEIGHT=1088

export FPS=60

  • MV-MIPI-IMX287M

export WIDTH=704

export HEIGHT=544

export FPS=319

  • MV-MIPI-IMX265M

export WIDTH=2048

export HEIGHT=1544

export FPS=45

  • MV-MIPI-IMX264M

export WIDTH=2432

export HEIGHT=2056

export FPS=28

  • RAW-MIPI-SC132M

export WIDTH=1024

export HEIGHT=1280

export FPS=120

  • RAW-MIPI-IMX462M

export WIDTH=1920

export HEIGHT=1088

export FPS=60

  • RAW-MIPI-AR0234M

export WIDTH=1920

export HEIGHT=1200

export FPS=60

  • RAW-MIPI-SC535M

export WIDTH=2432

export HEIGHT=2048

export FPS=50

7.2 Configure parameters using v4l2-ctl

$ v4l2-ctl -d /dev/v4l-subdev2 -L

User Controls

                   trigger_mode 0x00981901 (int)    : min=0 max=2 step=1 default=0 value=0 flags=volatile, execute-on-write

                    trigger_src 0x00981902 (int)    : min=0 max=1 step=1 default=1 value=1 flags=volatile, execute-on-write

                    soft_trgone 0x00981903 (button) : flags=write-only, execute-on-write

                     frame_rate 0x00981904 (int)    : min=1 max=60 step=1 default=60 value=60 flags=volatile, execute-on-write

                          roi_x 0x00981905 (int)    : min=0 max=1376 step=8 default=0 value=0

                          roi_y 0x00981906 (int)    : min=0 max=1024 step=4 default=0 value=0

Parameters can be set and get using the following methods.

v4l2-ctl --set-ctrl [ctrl_type]=[val]

v4l2-ctl --get-ctrl [ctrl_type]

All the above functions can be implemented using mv_mipi_i2c.sh.

Note that the above parameters cannot be modified during the capture process.

The following is an explanation of each parameter:

7.2.1 Trigger Mode

v4l2-ctl --set-ctrl trigger_mode=[0-2]

0:Video streaming mode

1:Normal trigger mode.

2:High-speed continuous trigger mode.

7.2.2 Trigger Source

v4l2-ctl --set-ctrl trigger_src=[0-1]

0: Software trigger mode.

1: Hardware trigger mode.

7.2.3 Software trigger command

v4l2-ctl --set-ctrl soft_trgone=1

7.2.4 Set frame rate

v4l2-ctl --set-ctrl frame_rate=[1-max]

The maximum frame rate is automatically updated as the resolution changed.

7.2.5 Set the starting position of the ROI

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_x=0

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_y=0

After setting the ROI starting position, you need to complete the full ROI configuration using the media-ctl command.

Note that setting the ROI may affect the maximum frame rate, and the ROI parameters need to meet the requirements specified in the camera manual.

7.3 Set image format using media-ctl

use the following command to configure the camera's data format, resolution, and frame rate using media-ctl:

media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam '"$I2C_BUS"'-003b":0[fmt:Y8_1X8/'"$WIDTH"'x'"$HEIGHT"'@1/'"$FPS"']'

Among them: "m00_b_mvcam '"$I2C_BUS"'-003b" refers to the complete name of the camera entity, Y8_1X8 is the mbus-code, '"$WIDTH"'x'"$HEIGHT"' indicates the resolution, 1/'"$FPS"' indicates the resolution frame rate.

The width and height here cooperate with the roi_x and roi_y of the v4l2-ctl command to form the ROI parameter.

For example, for MV-MIPI-IMX296M, the command after variable replacement would be:

media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam 6-003b":0[fmt:Y8_1X8/1456x1088@1/60 field:none]'

You can not only configure the data format, resolution, and frame rate in one command, but also modify them separately as needed.

7.4 Video Streaming mode

7.4.1 Set data format, resolution, frame rate

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_x=0

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_y=0

media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam '"$I2C_BUS"'-003b":0[fmt:Y8_1X8/'"$WIDTH"'x'"$HEIGHT"'@1/'"$FPS"']'

7.4.2 Frame rate statistics

In streaming mode, the following commands can be used for frame rate statistics:

v4l2-ctl --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=-1 --stream-to=/dev/null

Or:

./yavta -c1000 --skip 0 -f Y8 -s ${WIDTH}x${HEIGHT} /dev/video0

7.4.3 Save image to file
  • raw8

v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=1 --stream-to=y8-${WIDTH}x${HEIGHT}.raw

  • raw10

v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat='Y10 ' --stream-mmap --stream-count=1 --stream-to=y10-${WIDTH}x${HEIGHT}.raw

  • raw12

v4l2-ctl -d /dev/video0 --set-fmt-video=$WIDTH,height=$HEIGHT,pixelformat='Y12 ' --stream-mmap --stream-count=1 --stream-to=y12-${WIDTH}x${HEIGHT}.raw

Please refer to the description in the previous section for the image format.

7.4.4 Example of yavta
7.4.4.1 Install yavta

git clone git://git.ideasonboard.org/yavta.git

cd yavta;make

7.4.4.2 Save image to file

After setting data format, resolution, frame rate,run:

./yavta -c1 -Fy8-${WIDTH}x${HEIGHT}.raw --skip 0 -f Y8 -s ${WIDTH}x${HEIGHT} /dev/video0

7.4.5 Example of import image to OpenCV

sudo apt install python3-opencv

See the samples directory on github for details.

python ./v4l2dev_2_opencv_show_grey.py --width 1456 --height 1088 --fps 60 --i2c 7

7.4.6 Example of gstreamer application

We provide several gstreamer routines that implement the preview function. See the samples directory on github for details.

7.5 Trigger mode

7.5.1 Set data format, resolution, frame rate

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_x=0

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl roi_y=0

media-ctl -d /dev/media0 --set-v4l2 '"m00_b_mvcam '"$I2C_BUS"'-003b":0[fmt:Y8_1X8/'"$WIDTH"'x'"$HEIGHT"'@1/'"$FPS"']'

7.5.2 Software trigger mode
7.5.2.1 Set mode

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl trigger_mode=1

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl trigger_src=0

7.5.2.2 Start acquisition

v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=1 --stream-to=y8-${WIDTH}x${HEIGHT}.raw

7.5.2.3 Perform soft trigger operation

In other shell terminals, you can execute the following command multiple times for multiple triggers.

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl soft_trgone=1

7.5.3 Hardware trigger mode
7.5.3.1 Set mode

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl trigger_mode=1

v4l2-ctl -d /dev/v4l-subdev2 --set-ctrl trigger_src=1

The mv_mipi_i2c.sh script can be used to set rich trigger parameters.

7.5.3.2 Start acquisition

v4l2-ctl -d /dev/video0 --set-fmt-video=width=$WIDTH,height=$HEIGHT,pixelformat=GREY --stream-mmap --stream-count=1 --stream-to=y8-${WIDTH}x${HEIGHT}.raw

7.5.3.3 Perform hardware trigger operation

Connect the appropriate trigger signal to the trigger pin of the camera and trigger it.

8 i2c script for parameter configuration

We provide shell scripts to configure the parameters.

mv_mipi_i2c.sh user guide

9 References

  • OrangePi CM4

http://www.orangepi.cn/orangepiwiki/index.php/Orange_Pi_CM4

  • OrangePi CM5

http://www.orangepi.cn/html/hardWare/computerAndMicrocontrollers/service-and-support/Orange-Pi-CM5.html

10 Document History

  • 2024-01-10

Release 1st version.