CS-MIPI-IMX307 for Jetson Nano
How to use CS-MIPI-IMX307 camera module on NVIDIA Jetson Nano
1 Overview
This guide shows how to connect CS-MIPI-IMX307 to Jetson Nano. Jetson Nano SDK Version is r32.2.1. We provide two ways to do so: Prebuilt Binaries or Source Code. Yes, It's Open Source!
CS-MIPI-IMX307 is STARVIS camera module with ISP functions build in. It output UYVY data using MIPI-CSI2,1080p@30fps mode and 720p_crop@60fps mode. We provide V4L2 interface for video streaming apps , and Video Control Toolkits (which is Shell Script) to control the camera module directly.
The new version of Jetson Nano (B01) is supported.
2 Hardware Setup
Jetson Nano's CSI2 interface is compatible with CS-MIPI-IMX307. In addition,It need a 5V power.
3 Buruing the prebuilt Image to upgrade Jetson nano system
You can use the image prebuild by us to upgrade jetson nano system, which will support our camera.
Using whole prebuilt image
- download :
link:https://pan.baidu.com/s/1sWrcfEOivjuQ7T7P5bVcng
If Baidu cloud disk download is too slow, you can contact our company customer service xumm@csoneplus.com to obtain.
- How to burn
refer to Official document
4 Using source code to upgrade Jetson nano system
4.1 Reference documents
Jetson Nano system setup, please refer to official document:get-started-jetson-nano-devkit.
Development Docs:https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-321/index.html
4.2 Setting Up the Environment
- Host PC which runs Ubuntu 18.04/16.04(64-bit).
- NVIDIA® provided L4T release and corresponding sample rootfs for Jetson Nano™ development kit.
- A kernel image , device tree blob (DTB) file and module drivers for the CS-MIPI-IMX307 camera. The release package contains a kernel binary (Image),DTB files and module drivers, which you can download and rebuild from source.
- A jumper pin connected across J48 button header to enable DC power.
- A USB cable (micro USB port) to plug into the recovery port of the Jetson Nano™
- development kit.
- Power cable (5V-4A) to power the Jetson Nano™ board.
- Micro SD card must be connected to the J501 slot.
4.3 Host PC environment prepare
- Cross-compiling Toolchain
Please refer to this link to install toolchain on your Host PC.
- L4T source code and Rootfs
You could use SDK Manager or directly download to get source code.
- Setting Up the Environment
Assume SDK install directory is <TOPDIR>,source code is in $L4T_DIR/sources directory.
export TOP_DIR=<absolute path to top dir;in my case is /home/xumm/nvidia/nvidia_sdk/JetPack_4.2.2_Linux_GA_P3448/>
export L4T_DIR=$TOP_DIR/Linux_for_Tegra
export LOCALVERSION=-tegra
export LDK_ROOTFS_DIR=$TOP_DIR/Linux_for_Tegra/rootfs
export ARCH=arm64
export CROSS_COMPILE=aarch64-linux-gnu-
export CROSS32CC=arm-linux-gnueabihf-gcc
mkdir -p $L4T_DIR/sources/kernel/out_kernel
export TEGRA_KERNEL_OUT=$L4T_DIR/sources/kernel/out_kernel
export NVIDIA_PATH=$L4T_DIR/sources/kernel/nvidia
export NANO_DTS_PATH=$L4T_DIR/sources/hardware/nvidia/platform/t210/porg/kernel-dts
- Build default image, prepare L4T environment
cd $L4T_DIR
sudo ./apply_binaries.sh
- Download source code for Jetson Nano
cd $L4T_DIR
git clone https://github.com/veyeimaging/nvidia_jetson_veye_bsp.git
export RELEASE_PACK_DIR=$L4T_DIR/nvidia_jetson_veye_bsp
4.4 Using prebuild Image and DTB
4.4.1 Installing the Kernel and DTS
cd $RELEASE_PACK_DIR/kernel_image
tar -xzvf Image_l4t_r32.2.1_veyecam.tar.gz
sudo cp Image $L4T_DIR/kernel/ -f
sudo cp $RELEASE_PACK_DIR/Nano/JetPack_4.2.2_Linux_GA_P3448/dts\ dtb/CS-MIPI-IMX307/tegra210-p3448-0000-p3449-0000-a02.dtb $L4T_DIR/kernel/dtb/ -f
sudo cp $RELEASE_PACK_DIR/Nano/JetPack_4.2.2_Linux_GA_P3448/dts\ dtb/CS-MIPI-IMX307/tegra210-p3448-0000-p3449-0000-b00.dtb $L4T_DIR/kernel/dtb/ -f
cd $L4T_DIR
4.5 Flashing the Jetson Nano Development Kit
The steps to flash the Jetson Nano™ development kit are as follows:
- Ensure a jumper is connected across J48 button header to enable DC power.
- Connect the micro USB cable to the Jetson Nano™ and host PC.
- Set the board to recovery mode, as mentioned in below steps:
a. Power OFF the board.
b. Connect the jumper pin to the pin 3 and pin 4 of the J40 button header.
c. Power ON the Jetson Nano™ development kit.
If the board is successfully changed to recovery mode, the Jetson Nano™development kit will be enumerated as an USB device to the host PC.
Run the following command to verify whether the board is in recovery mode.
lsusb
The output message appears as shown below.
Bus 001 Device 102: ID 0955:7f21 NVidia Corp.
4. Run the following commands to flash the Jetson Nano™ development kit from
your host PC.
cd $L4T_DIR
sudo ./flash.sh jetson-nano-qspi-sd mmcblk0p1
Note: Now, the entire micro SD on the Jetson Nano™ development kit will be erased. It will take about 10-30 minutes to complete depending on the host PC configuration.
5. Reboot and connect the Jetson Nano™ board to a monitor and keyboard to complete the OS configuration, once flashing is completed.
4.6 Building from Source
4.6.1 Build kernel
- patch code
cp $RELEASE_PACK_DIR/drivers_source/cs_imx307\ veye327/* $NVIDIA_PATH/drivers/media/i2c/
cp $RELEASE_PACK_DIR/drivers_source/kernel_csimx307veye327_config $L4T_DIR/sources/kernel/kernel-4.9/arch/arm64/configs/tegra_csimx307veye327_defconfig
- build
cd $L4T_DIR/sources/kernel/kernel-4.9/
make ARCH=arm64 O=$TEGRA_KERNEL_OUT tegra_csimx307veye327_defconfig
make ARCH=arm64 O=$TEGRA_KERNEL_OUT Image -j4
Completed Image file is $TEGRA_KERNEL_OUT/arch/arm64/boot/Image,could be used for Flashing or Upgrading.
Install Image for Flashing:
sudo cp $TEGRA_KERNEL_OUT/arch/arm64/boot/Image $L4T_DIR/kernel/ -f
4.6.2 Build DTS
- patch code
cp $RELEASE_PACK_DIR/Nano/JetPack_4.2.2_Linux_GA_P3448/dts\ dtb/common/t210/* -r $NANO_DTS_PATH/
cp $RELEASE_PACK_DIR/Nano/JetPack_4.2.2_Linux_GA_P3448/dts\ dtb/CS-MIPI-IMX307/tegra210-porg-plugin-manager.dtsi -r $NANO_DTS_PATH/porg/kernel-dts/porg-plugin-manager
- build
make ARCH=arm64 O=$TEGRA_KERNEL_OUT dtbs
cp $TEGRA_KERNEL_OUT/arch/arm64/boot/dts/tegra210-p3448-0000-p3449-0000-a02.dtb $L4T_DIR/kernel/dtb/
cp $TEGRA_KERNEL_OUT/arch/arm64/boot/dts/tegra210-p3448-0000-p3449-0000-b00.dtb $L4T_DIR/kernel/dtb/
Could be used for Flashing or Upgrading.
4.7 Upgrading Kernel Image and Supplements
First,you should copy Image file to Jetson nano somehow. Use a U disk for example.
sudo cp <path to your Image dir>/Image /boot/Image -f
4.8 Upgrading DTB File by Flashing from Host PC
Burning process reference 4.3, burning commands is as below:
cd $L4T_DIR
sudo ./flash.sh -r -k DTB jetson-nano-qspi-sd mmcblk0p1
Power off after flashing finished.
5 Applications and Test
5.1 Check system status
The steps to verify the setup before testing Gstreamer pipelines are as follows:
1. Run the following commands to check the Gstreamer-1.0 version.
$ gst-inspect-1.0 --version
gst-inspect-1.0 version 1.14.4
GStreamer 1.14.4
Note: Make sure that CS-MIPI-IMX307 is connected and the required driversare loaded.
During booting, the module drivers for CS-MIPI-IMX307 will be loaded automatically in the Jetson Nano™ development kit.
2. Run the following command to confirm whether the camera is initialized.
dmesg | grep csx307
The output message appears as shown below.
subdev csx307 6/7/8-003b bound
The output message indicates that the camera is initialized properly.
3. Run the following command to check the presence of video node.
ls /dev/video*
The output message appears as shown below.
video0(1)
5.2 Video Stream Toolkits Manual
5.2.1 Gstreamer Usage
- Preview FHD(HW accelerated)
gst-launch-1.0 v4l2src ! "video/x-raw,format=(string)UYVY, width=(int)1920, height=(int)1080" ! nvvidconv ! "video/x-raw(memory:NVMM),format=(string)I420" ! nvoverlaysink sync=false
- Preview 720p@60fps HD(HW accelerated)
gst-launch-1.0 v4l2src ! "video/x-raw,format=(string)UYVY, width=(int)1280, height=(int)720, framerate=(fraction)60/1" ! nvvidconv ! "video/x-raw(memory:NVMM),format=(string)I420" ! nvoverlaysink sync=false
- Preview 2 cameras 1080p HD(HW accelerated)
WIDTH=1920
HEIGHT=1080
CAPS="video/x-raw,format=(string)UYVY, width=$WIDTH, height=$HEIGHT"
gst-launch-1.0 nvcompositor name=comp sink_0::xpos=0 sink_0::ypos=0 sink_0::width=$WIDTH sink_0::height=$HEIGHT sink_1::xpos=$WIDTH sink_1::ypos=0 sink_1::width=$WIDTH sink_1::height=$HEIGHT ! nvoverlaysink v4l2src device=/dev/video0 ! $CAPS ! nvvidconv ! "video/x-raw(memory:NVMM),format=(string)I420"! comp. v4l2src device=/dev/video1 ! $CAPS ! nvvidconv ! "video/x-raw(memory:NVMM),format=(string)I420"! comp.
- Record FHD in H.264 format to a video file(HW accelerated)
gst-launch-1.0 v4l2src num-buffers=300 ! "video/x-raw,format=(string)UYVY, width=(int)1920, height=(int)1080" ! nvvidconv ! "video/x-raw(memory:NVMM),format=(string)I420" ! omxh264enc qp-range=20,20:20,20:-1,-1 ! matroskamux ! queue ! filesink location=videoname.mkv
- Playback of saved video file (HW accelerated)
gst-launch-1.0 filesrc location=videoname.mkv ! matroskademux ! h264parse ! omxh264dec ! nvoverlaysink
- Capturing FHD still image
gst-launch-1.0 v4l2src num-buffers=1 ! "video/x-raw,format=(string)UYVY, width=(int)1920, height=(int)1080" ! jpegenc ! filesink location=jpgname.jpg
- Capturing 720p still image
gst-launch-1.0 v4l2src num-buffers=1 ! "video/x-raw,format=(string)UYVY, width=(int)1280, height=(int)720" ! jpegenc ! filesink location=jpgname.jpg
5.3 Video Control Toolkits Manual
Jetson Nano A02 use i2c-6 as camera control bus,Jetson Nano B01 use i2c-7 and i2c-8 as camera control bus.
Using -b option to identify which bus to use.
cd $RELEASE_PACK_DIR/i2c_cmd/bin
Video Control Toolkits Manual : CS-MIPI-IMX307 i2c
6 Others
This article and the source code are still in the process of improving. If you have any suggestions for improvement, you are welcome to email xumm#csoneplus.com.